Japanese-Swiss Joint Workshop on Aging, Health and Technology

18th, 19th & 20th March 2015
JST Tokyo Headquarters

Recommendatory Report

16th November 2015

Scientific Workshop Chairs:

Prof. Dr. Mihoko Otake
Chiba University, Japan

Prof. Dr. Mike Martin
University of Zurich, Switzerland
Table of Contents

1. Overview .. 3
 1.1 Introduction and background .. 3
 1.2 Summary information ... 3

2. Outcomes .. 4
 2.1 Executive Summary: Scientific aims and relevance of workshop theme 4
 2.2 Main themes discussed by participants ... 5
 2.3 Potential fields of cooperation and areas of complementarity between Japanese and Swiss participants ... 7

3. Recommendations and opportunities .. 9
 3.1 Opportunities for Swiss-Japanese collaborations ... 9
 3.2 Obstacles preventing better cooperation between Japan and Switzerland 9
 3.3 Proposed ways to promote collaboration and mutual topics 9

4. Appendices ... 11
 4.1 Workshop agenda .. 11
 4.2 List of participants .. 14
 4.3 Organisers’ contact information ... 16
1. Overview

1.1 Introduction and background

The Japan Science and Technology Agency (JST) and the University of Zurich (UZH) jointly hosted the Workshop on Aging, Health and Technology in Tokyo as part of the Japanese-Swiss strategic bilateral science and technology partnership, which was established following an agreement signed by the respective governments in 2007. This bilateral funding program builds on the high innovation power, the quality of research institutions and the strong investment in science and technology in both Japan and Switzerland. Since 2007, this partnership has supported joint research projects in molecular medical sciences and medicine for an ageing society, and in the coming years it will lay the foundations for future collaboration between researchers in Japan and Switzerland by supporting the exchange of young scientists.

Following on from previous joint events held in the fields of medical research, molecular medical research, nanoscience and energy, this Workshop on Aging, Health and Technology was the fourth of its kind targeting the strengthening of connections between the Swiss and Japanese research communities.

This Recommendatory Report is intended to provide information on outcomes from the Workshop to the organisers and other relevant institutions in both countries for the purpose of further promoting cooperation between Switzerland and Japan in this field of research and to advise on the formulation of potential support to future collaborative research activities.

1.2 Summary information

Title: Japanese-Swiss Joint Workshop on Aging, Health and Technology

Dates: Wednesday 18th - Friday 20th March 2015

Location:

JST Tokyo Headquarters, K’s Gobancho (7, Gobancho, Chiyoda-ku, Tokyo 102-0076 Japan), 1st Floor Conference Hall and 2nd Floor Seminar Room

Scientific Chairs:

- Professor Mike Martin (University of Zurich)
- Professor Mihoko Otake (Chiba University)

Sponsors (Organisers):

- Swiss Federal Institute of Technology Zurich (ETH Zurich) as Leading House and University of Zurich (UZH) as Associated Leading House
- Japan Science and Technology Agency (JST)
- The Swiss Academy of Humanities and Social Sciences (SAGW)
- Embassy of Switzerland in Japan (Science & Technology Office Tokyo)

Aims:

- To connect top researchers in Switzerland and Japan in fields related to aging, health and technology
To promote exchange among promising young researchers from Switzerland and Japan
To explore suitable topics within the broad field of “Aging, Health and Technology” for future potential cooperation between Switzerland and Japan

Participants: 51 researchers (27 representing Japan; 24 representing Switzerland); 14 non-scientific staff (6 representing Japan; 8 representing Switzerland)

Structure:

- Thematic sessions were organised (see Appendix 4.1) each comprising 4 speaker presentations (15 minutes each) by specialists in the field, followed by Q&A and general discussion (30 minutes) among all workshop participants. Several parallel sessions also offered a choice of thematic areas to join. There was also a session on funding opportunities for researchers.
- Young researchers from both countries were also encouraged to attend to participate in an interactive poster and technology demonstration session, allowing research teams to showcase their work.
- A balance between engineering/technical researchers and social science/medical science researchers, as well as participation from industry, was targeted among the participants.
- A site visit to Kashiwa-no-ha Smart City was arranged for the final day to give participants a chance to see applications of this broad field of research in practice.
- A social programme including 2 evening receptions was arranged to facilitate cultural exchange as well as academic.

2. Outcomes

2.1 Executive Summary: Scientific aims and relevance of workshop theme

This first Japanese-Swiss Joint Workshop on Aging, Health and Technology hosted a broad disciplinary participation from both countries of high-level researchers who were interested in processes related to aging and health, including health measurement and intervention using new technologies in daily life, health data management and ownership, health in very old age, contexts of healthy aging (norms, culture, law), health outcomes and behaviors and participatory research approaches with older adults.

The workshop responded to the observation of a rapid change in affordable technology and big data applications available to monitor and positively influence the health and quality of life of aging individuals. Through the simultaneous measurement of a multitude of health-related activities and parameters in the everyday contexts of many individuals with high frequencies, this increasingly allows to target individualized real world health outcomes and to substantially increase the efficacy of health and productivity maintenance in the aging populations.

Measuring and interpreting health development in aging individuals in real life contexts not only requires the measurement of contexts, it primarily profits from a thorough knowledge and understanding of the historical, social, institutional, structural, legal, historical and developmental of contexts of individuals. Obviously, the same behavior has different meanings for the health and quality of life of individuals living in different cultural settings. With the enormous and complementary wealth of experience in using portable and robotic devices and sophisticated and
Adaptive software and applications the workshop fostered Swiss-Japanese collaborations in the area of healthy aging.

With Japan and Switzerland being among the countries with the longest life expectancies in the world and both with exemplary engineering, social science, and health scientists, the workshop explored and supported cross-disciplinary and cross-cultural aging, health and technology research and created an atmosphere of innovation and to exploit complementary strengths between researchers.

The potential for collaborations and for innovation from such an interdisciplinary workshop is huge. Consider that combining modern technology and person- and culturally specific knowledge and methods allows, for the first time, to develop, evaluate and provide individualized, person-specific technologies for healthy older adults that can be used in real life instead of the traditional laboratory approach to carry out individualized, affordable and culturally adapted interventions for the maintenance of quality of life. Maintaining the health of healthy adults for only one year longer than currently predicted would save an estimated 7 billion Swiss Francs in health care costs in Switzerland alone.

Smart real life health tracking technology and applications will be one of the quickly growing markets of the near future, estimated at several billion dollars. Although some technology currently exists, extending their development and application beyond ill adults to the much larger group of healthy aging individuals aiming at stabilizing their quality of life, this opens a huge new playing field for research, technology and business and services development. Through the collaboration between countries, progress could be made substantially faster. Smart technologies can also provide new intervention targets as they become reliably measurable. So in addition to self-reports from patients, real life health monitoring data can be developed into decision support systems for individuals, relatives, or physicians.

The workshop addressed potentials for the research and development on health-monitoring and health-supporting individualized technologies from a range of relevant perspectives. As the use and acceptance of technology may differ substantially between persons and cultures, between healthy individuals and individuals with specific impairments, depends on social norms and expectations, on financial and educational resources, may differ between clinical and real life contexts, the workshop explored a range of disciplinary and interdisciplinary approaches to better understand health and quality of life in aging. It also highlighted technological opportunities and developed promising avenues of future research and Swiss-Japanese collaborations.

2.2 Main themes discussed by participants

Through all presentations and presented research agendas it became obvious that research groups in both countries share interests in similar issues, but use substantially different and complementary approaches to tackle them. Thus, the potential from more frequent and intensified collaborations are obvious in many fields and start with rather simple measures of continued information about ongoing and planned projects, researchers and research groups, and access to technologies developed in the research groups in both countries.

Shared research topics and methods included seven main areas:
(a) Individualizing health outcomes
Using intensive and high-frequency measurement devices, interventions can be efficiently tailored to the individuals and short-term and contextual variations of individual abilities and needs. This promises efficiency increases in health services by a factor of 5 to 10 compared to approaches without individualization.

(b) Stakeholders involvement
Several groups have developed a range of approaches to productively use stakeholder involvement and participatory research approaches to optimize the design and delivery of health- and autonomy-promoting products and services.

(c) Interfaces and interactions
Several groups have developed procedures to design a range of interaction interfaces including social robots, medical robots, or adaptive communication analyses software to be able to match individual’s abilities, needs, and sense of acceptance of technology. A simple exchange of these interfaces and application in different cultural settings of the two countries can provide a major impetus for a rapid development of services.

(d) Contextualization
It became clear that there is a huge efficiency potential in contextualizing health promotion and health outcome measurement. This requires a shift towards computational health research using theoretical models of dynamic person-environment interactions to develop tools and apps to interpret health-relevant behaviors and contexts based on basic research to understand the mechanisms of aging.

(e) Real world applications
A shift away from pure laboratory research to the goal of achieving and determining effects in the real lives of individuals became obvious. This opens a new field of health outcome research, made possible through modern lightweight portable measurement technology combined with smart analysis and feedback software.

(f) Interdisciplinarity of engineering, social sciences, medicine, and cultural sciences
All groups demonstrated the advantages and the necessity to move from discipline-specific “inside-the-box”-thinking to project-oriented and interdisciplinary “outside-the-box”-approaches combining methods and theories from different disciplines to achieve progress. In particular humanities and social sciences as the disciplines of experts in interpreting context emerged as an important part of efficient healthy aging research and application development for better social design.

(g) Activities versus Abilities
There was a shift from focussing on understanding age-changes in abilities to age changes in activities. This goes along with the new possibilities to measure activities in daily life whereas until very recently only ability measures delivered reliable performance data.
Some key questions discussed were:

- How can we best monitor (including SELF-monitoring) health (illness) in unobtrusive ways in older adults’ daily lives?

- How can interventions be individualized? Can data quality be improved by involving older citizens (with or without illnesses!) in the development of research projects, including the development of new models of data ownership?

- Can technology help to reduce risks associated with old age, such as falls, and to facilitate interventions targeting, for example, mobility and functional health?

- Are there are cultural differences in the acceptance of home-based sensors (greater reservation in Europe than Japan)? Also depends on the type of sensors: audio/video versus movement)

- How can technology be made less invasive so that it can really be used mobile and in everyday life with high usability?

- How can technology motivate older adults to promote health conscious behaviors?

- What is healthy living and high quality of life in contrast with the end of life considering cultural and social change driven by technologies?

2.3 Potential fields of cooperation and areas of complementarity between Japanese and Swiss participants

The potential for bilateral and interdisciplinary collaborations and innovation is huge. The combination of modern technology and person- and culturally specific knowledge and methods allows, for the first time, to develop, evaluate and provide individualized, person-specific technologies for healthy older adults that are effective in real life, can be individualized, are affordable and can be culturally adapted. Maintaining the health of healthy adults for only one year longer than currently predicted would save an estimated 7 billion Swiss Francs in health care costs in Switzerland alone.

Smart real life health tracking technology and applications will be one of the quickly growing markets of the near future, estimated at several billion dollars. Although some technology currently exists, extending their development and application beyond ill adults to the much larger group of healthy aging individuals aiming at stabilizing their quality of life, this opens a huge new playing field for research, technology and business and services development. Currently, Switzerland is hosting global industry leaders in portable sensor technology and data-driven health decision support systems. In Japan, industries are anticipating to grow a care supporting robot market. Development of robots for supporting healthy older adults to maintain their health or reducing dependency to care services is needed for productivity of society. Through the collaboration between Switzerland and Japan, progress could be made substantially faster. Smart technologies can also provide new intervention targets as they become reliably measurable. So in addition to self-reports from patients, real life
health monitoring data can be developed into decision support systems for individuals, relatives, or physicians.

Specific innovative areas for complementary research activities in Switzerland and Japan are the following:

(a) Concerted effort to measure, visualize, model, understand, and support individual health in real world contexts
Exemplar Questions: What are key components of “health” and “quality of life” in the eye of the researchers but also other stakeholders, including older adults, and how could these be operationalized in daily life? How can the identified indicators be measured in daily life? How could the resulting data be analyzed and visualized as feedback both to scientists and older adults and what type of person-centered interventions can be derived?

(b) Extracting meaning from multitude of data sources from individuals
Exemplar Questions: When collecting accelerometer data, GPS data, physiological data, cognitive performance data, and momentary self-reports intensely and repeatedly within individuals, how can all of these different data types best be combined to provide interpretable information regarding a person’s health?

(c) Participatory healthy aging sciences
Exemplar Questions: How can various stakeholder groups (scientists, older adults themselves, care professionals, family members and close others of the “target” older adult) become involved in the different stages of a research project (development of research question, design, data collection, data analysis, etc.) in order to derive at meaningful questions, data and interventions that matter to address everyday health in late life?

(d) New ethics for new forms of big health data
Exemplar Question: When collecting a multitude of data intensely within individuals, how can “informed consent” be provided and for what aspects of the study? Which new ethical standards need to be developed in order to deal effectively with the question of data security and privacy for the large amount of data collected for each individual considering the balance of benefit and risk?

(e) Legal consequences and political discussion of big health data
Exemplar Question: Regarding (d), which new regulations both for consent provision, data security and data ownership need to be developed and implemented at the legal and political level?

These areas are also in line with the most recently announced Swiss National Research Programs (NRP) “Health Services Research” and “Big Data”, the national research agenda defined by the Swiss Academies of Sciences and the Swiss Society of Gerontology.
3. Recommendations and opportunities

3.1. Opportunities for Swiss-Japanese collaborations

It is obvious, that more collaborations between Switzerland and Japan provide unique and large opportunities. There is an excellent and high level of expertise and resources in the fields of aging, healthy aging, and technology development in both countries. There is also a great openness for exchange and collaboration, a high similarity of life expectancies, and similar strengths in interdisciplinary healthy aging research combining engineering, psychology, demographics, medicine, health services, and law. There are shared views of individual- and citizen-centered, not population- and patient-centered healthy aging approach, there are common research themes across countries, there is clearly critical mass, official support, and the awareness of the economic and societal importance and effects of healthy aging and technology research and services development.

3.2. Obstacles preventing better cooperation between Japan and Switzerland

Despite the huge potential of an intensified Swiss-Japanese collaboration in the area of health, technology, and aging, there are a number of practical obstacles that were identified. These include:

- **Lack of information on relevant experts in these fields** within and across both countries. The workshop was a very important first step to overcome this problem.
- **Lack of efficient communication platforms/technology** (both formal and informal) to support collaborations.
- **Lack of a track record** of cooperation projects needed for additional third-party funding acquisition.
- **Lack of interdisciplinary links** and development of common theories and methods between psychology, medicine, engineering and information science.
- **Lack of focus on healthy aging** and its promotion. There is still a strong focus on dementia and illness in many research fields and engineering applications often target unhealthy aging and cognitive illness.

3.3. Proposed ways to promote collaboration and mutual topics

To overcome the barriers of collaboration and exploit the opportunities, based on the workshop the following recommendations can be made:

1. Establish a Swiss or Swiss-Japanese Laboratories and Methodologies Exchange Platform

This way, access to expensive and available infrastructure and technology can be exploited at a relatively low cost. This should include a platform to facilitate networking between researchers within and between both countries.
(website demonstrating common projects, projects of potential interest to partners in other country, exchange programs for young and for advanced scientists) and Swiss-Japanese distinguished scientists lecture and workshop series. It should also contain a Swiss and a Swiss-Japanese Virtual lab environment with easy-to-use videoconferencing setup. This way, informal and formal exchanges can be easily promoted. The workshop demonstrated that establishing these exchange platforms and time to familiarize with researchers and cultural environments are most likely to lead to joint project development.

The exchange platform could also host joint workshops to define international standards for new healthy aging and technology research, e.g., “Enhancing communication within groups of older adults, between older adults and their close others, doctor-patient communication, etc.”, “participatory approaches to examine health in old age”, “need for developments in mobile health-tracking technology”, “methods to extract and analyze health-relevant information from intensive ambulatory assessment data in late life”.

On a regular biannual basis, progress of collaborations should be reviewed in workshops according to the model of this first Swiss-Japanese Workshop on Aging, Health and Technology.

(2) Establish a Swiss-Japanese Real Life Health Outcome Measurement Research Network

This exploits the potentials and overcomes the barriers in the most efficient way. The research network consisting of researchers from both countries and representatives of national research funding agencies could support and coordinate projects on measurement technology and software, data harvesting, outcome measurement, activity mapping and visualization, contextualized outcome interpretation, app development, implementation, ethics lab, licensing. Priority domains for measurement and analyses are social-conversational activities, mobility activities, and cognitive activities. The network could deploy and review joint calls related to the intersection between psychology, engineering, medical sciences, and information science.

To build critical mass, we suggest that 10 joint four-year projects (added time to the usual three years to allow for requirements of bilateral international collaborations between Japan and Switzerland) and 500-800k CHF should be funded by the network. Topics of the projects should match the key research areas identified by the workshop.

In addition, interdisciplinary and participatory research groups should be established. Funding should ideally be matched by institutions involved and cover a 5-year period required to develop innovative new fields (versus three years in well-established traditional research domains).
4. Appendices

4.1 Workshop agenda

Wednesday 18th March - 1st Floor Conference Hall

15:30-16:00 Registration & poster setting
16:00-16:15 **Opening Remarks**
 - Shoichiro Tonomura, Executive Director, Japan Science and Technology Agency (JP)
 - Christian Schwarzenegger, Vice President Law & Economics, University of Zurich (CH)
16:15-17:15 **Workshop Introduction and Keynote Presentations by the Workshop Co-Chairs**
 - Mihoko Otake, Chiba University (JP)
 “Technology for health and well-being”
 - Mike Martin, University of Zurich (CH)
 “Healthy aging at the individual and everyday level”
17:15-17:30 Group picture
18:00~ Reception at Arcadia Ichigaya hotel, 5th Floor “Daisetsu Room”

Thursday 19th March

09:00-10:30 **Session 1: Gerotechnology & Health (Chair: Tobias Nef)**
 1st Floor Conference Hall
 - Walter Karlen, Swiss Federal Institute of Technology Zurich ETH (CH)
 “mHealth opportunities for monitoring an aging population”
 - Norihisa Miyake, Chiba University (JP)
 “Improving the elderly assist environment through cooperation of nursing and engineering”
 - Tobias Nef, University of Bern (CH)
 “Assistive technology for neurodegenerative and brain injured patients”
 - Takenobu Inoue, The National Rehabilitation Center for Persons with Disabilities (JP)
 “Communication robot for dementia care”
10:30-11:00 Coffee/tea break

11:00-12:30 **Session 2: Technology Implications - Big Health Data & Management (Chair: Ken Fukuda)**
 1st Floor Conference Hall
 - Christian Lovis, University Hospitals of Geneva (CH)
 “Moving from a care driven system to citizen centered health”
 - Nobuhisa Asano, University of Tokyo (JP)
 “Mobile health business models in Switzerland”
 - René Schwendimann, University of Basel (CH)
"The Swiss Nursing Homes Human Resources Project (SHURP)"
Ken Fukuda, National Institute of Advanced Industrial Science and Technology (JP)
"Toward employee-driven innovation: analysis of hand-over system for care-workers in real operation"

12:30-14:00
Interactive Poster and Technology Demonstration Session
(Buffet lunch provided)

14:00-15:30
Parallel Session 3a: Aging of Movement & Nutrition (Chair: Reto W. Kressig)
1st Floor Conference Hall
Kamiar Aminian, Ecole Polytechnique Fédérale de Lausanne EPFL (CH)
"Daily activity and movement complexity in health, ageing and disease"
Akiko Kumagai, Nestle Japan Ltd. (JP)
"Healthy Aging Project – Nestle Japan"
Reto W. Kressig, University of Basel, Felix Platter-Hospital Basel (CH)
"Role of vitamin D and proteins for maintaining mobility and functionality"
Hiroshi Shimokata, Nagoya University of Arts and Sciences (JP)
"Nutrition and healthy aging"

Parallel Session 3b: Detection of Aging & Robotics (Chair: Yoshio Matsumoto)
2nd Floor Seminar Room
Florian Riese, University Hospital Zurich / University of Zurich (CH)
"Health outcome measures in advanced dementia"
Kazuyoshi Wada, Tokyo Metropolitan University (JP)
"Psychophysiological effect of interaction with seal robot"
Albulena Shaqiri, Ecole Polytechnique Fédérale de Lausanne EPFL (CH)
"The effects of aging on perception and cognition"
Yoshio Matsumoto, National Institute of Advanced Industrial Science and Technology (JP)
"Humanoid and assistive robots for medical and nursing care application"

15:30-16:00
Coffee/tea break

16:00-17:30
Parallel Session 4a: Aging & Plasticity of Brain and Cognition (Chair: Matthias Kliegel)
1st Floor Conference Hall
Bogdan Draganski, University Hospital Lausanne CHUV (CH)
"In vivo histology for studies of brain plasticity and effects of ageing"
Shohei Kato, Nagoya Institute of Technology (JP)
"Speech prosody-based cognitive impairment rating: toward early detection of mild Alzheimer's disease and mild cognitive impairment"
Matthias Kliegel, University of Geneva (CH)
"Plasticity of cognitive control in the third and fourth age"
 Yasuyuki Gondo, Osaka University (JP)
"Influence of environmental factors on the cognitive function in the elderly"
Shigeo Murayama, Tokyo Metropolitan Geriatric Hospital & Institute of Gerontology (JP)
"The Brain Bank for Aging Research Project and its contribution to healthy aging"
Parallel Session 4b: Dignified Aging in Super Aged Society (Chair: Shinsuke Fujita)

2nd Floor Seminar Room

Brigitte Tag & Christian Schwarzenegger, University of Zurich (CH)
“End-of-life decisions and the law – the Swiss perspective”

Makoto Ida, Keio University (JP)
“End-of-life decisions and the law – the Japanese perspective”

Michel Oris, University of Geneva (CH)
“The life course construction of inequalities among Swiss elderly”

Shinsuke Fujita, Chiba University (JP)
“Healthcare system for aged society”

18:30~
Reception at Hanabishi restaurant

Friday 20th March - 1st Floor Conference Hall

08:30-10:00

Session 5: Interaction, Usability and Ethics (Chair: Effy Vayena)

1st Floor Conference Hall

Elena Mugellini, University of Applied Sciences and Arts Western Switzerland (CH)
“Design and development of interactive technologies for human wellbeing”

Yukiko Nakano, Seikei University (JP)
“Conversational agents for the elderly with dementia”

Effy Vayena, University of Zurich (CH)
“Ethical challenges in participant-led health research”

Etsuko T. Harada, University of Tsukuba (JP)
“Universal design and usability for elders: why is it so difficult to use for older adults?”

10:00-10:30
Coffee/tea break

10:30-11:00

Funding Opportunities

Jean-Luc Barras, Swiss National Science Foundation (SNSF) (CH)
Martin Gadsden, Japan Science and Technology Agency (JST) (JP)

11:00-11:30
Outlook & Conclusion

Mihoko Otake, Chiba University (JP) & Mike Martin, University of Zurich (CH)

Site Visit to Kashiwa-no-ha Smart City (Approximate schedule)

11:30-13:00 Bus transfer to Kashiwa-no-ha (Bento box lunch provided)
13:00-15:30 Introduction, guided facilities tour, etc.
15:30-16:30 Presentation/discussion session
16:30-18:30 Bus transfer back to central Tokyo (JST)
4.2 List of participants

Professor Kamiar Aminian
Dr. Nobuhisa Asano
Dr. Jean-Luc Barras
Dr. Maurizio Caon
Dr. Stefano Carrino
Dr. Shunsuke Doi
Professor Bogdan Draganski
Mr. Gian Ege
Dr. Frederic Ehrler
Dr. Delphine Fagot
Ms. Michelle Fillekes
Dr. Matthias Frey
Professor Shinsuke Fujita
Dr. Ken Fukuda
Mr. Martin Gadsden
Professor Yasuyuki Gondo
Professor Etsuko T. Harada
Professor Makoto Ida
Dr. Hiroki Ide
Dr. Yasmine Inauen
Mr. Takenobu Inoue
Ms. Yoshiko Ishioka
Mr. Sotaro Ito
Professor Shohei Kato
Professor Walter Karlen
Professor Matthias Kliegel
Ms. Anna Kolly
Ms. Marina Kozono
Professor Reto W. Kressig
Ms. Akiko Kumagai
Dr. Takeshi Kurinobu
Professor Christian Lovis
Professor Mike Martin
Ms. Yukie Masui
Ms. Yasuko Matsumoto
Dr. Yoshio Matsumoto
Dr. Susan Mérillat
Professor Norihisa Miyake
Professor Elena Mugellini
Professor Shigeo Murayama
Dr. Hideo Nakajima
Mr. Takeshi Nakagawa
Professor Yukiko Nakano
Professor Tobias Nef
Dr. Takuichi Nishimura
Professor Michel Oris
Professor Mihoko Otake
Dr. Florian Riese
Dr. Christina Röcke
Dr. Kana Sadaoka
Professor Christian Schwarzenegger

Ecole Polytechnique Fédérale de Lausanne EPFL
The University of Tokyo
Swiss National Science Foundation
University of Applied Sciences and Arts Western Switzerland
University of Applied Sciences and Arts Western Switzerland
Chiba University Hospital
University Hospital Lausanne
University of Zurich
University Hospitals of Geneva
University of Geneva
University of Zurich
Embassy of Switzerland in Japan
Chiba University
National Institute of Advanced Industrial Science and Technology
Japan Science and Technology Agency
Ostaka University
University of Tsukuba
Keio University
Chiba University Hospital
University of Zurich
The National Rehabilitation Center for Persons with Disabilities
Tokyo Metropolitan Institute of Gerontology
Japan Science and Technology Agency
Nagoya Institute of Technology
Swiss Federal Institute of Technology Zurich ETH
University of Geneva
University of Zurich
Osaka University
University of Basel
Nestle Japan Ltd.
University of Tsukuba
University Hospitals of Geneva
University of Zurich
Tokyo Metropolitan Institute of Gerontology
Embassy of Switzerland in Japan
National Institute of Advanced Industrial Science and Technology
University of Zurich
Chiba University
University of Applied Sciences and Arts Western Switzerland
Tokyo Metropolitan Geriatric Hospital & Institute of Gerontology
Japan Science and Technology Agency
Ostaka University
Seikei University
University of Bern
National Institute of Advanced Industrial Science and Technology
University of Geneva
Chiba University
Psychiatric University Hospital Zurich
University of Zurich
Japan Science and Technology Agency
University of Zurich
<table>
<thead>
<tr>
<th>Name</th>
<th>Affiliation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dr. René Schwendimann</td>
<td>University of Basel</td>
</tr>
<tr>
<td>Dr. Albulena Shaqiri</td>
<td>Ecole Polytechnique Fédérale de Lausanne EPFL</td>
</tr>
<tr>
<td>Mr. Shota Shibakawa</td>
<td>Chiba University</td>
</tr>
<tr>
<td>Professor Hiroshi Shimokata</td>
<td>Nagoya University of Arts and Sciences</td>
</tr>
<tr>
<td>Ms. Kyoko Suzuki</td>
<td>Embassy of Switzerland in Japan</td>
</tr>
<tr>
<td>Professor Brigitte Tag</td>
<td>University of Zurich</td>
</tr>
<tr>
<td>Dr. Akitoshi Tomita</td>
<td>University of Zurich</td>
</tr>
<tr>
<td>Dr. Shoichiro Tonomura</td>
<td>University of Tsukuba</td>
</tr>
<tr>
<td>Mr. Eiichi Tsurumoto</td>
<td>Japan Science and Technology Agency</td>
</tr>
<tr>
<td>Dr. Effy Vayena</td>
<td>Japan Science and Technology Agency</td>
</tr>
<tr>
<td>Mr. Michael Vogelsanger</td>
<td>University of Zurich</td>
</tr>
<tr>
<td>Professor Kazuyoshi Wada</td>
<td>Embassy of Switzerland in Japan & University of Zurich</td>
</tr>
<tr>
<td>Ms. Rahel Wartenweiler</td>
<td>Tokyo Metropolitan University</td>
</tr>
<tr>
<td>Ms. Tsai Yu-Chun</td>
<td>University of Zurich</td>
</tr>
<tr>
<td></td>
<td>Osaka University</td>
</tr>
</tbody>
</table>
4.3 Organisers’ contact information

Japan Science and Technology Agency (Department of International Affairs)
Tokyo Headquarters (K’s Gobancho), 7 Gobancho, Chiyoda-ku, Tokyo 102-0076
Kana Sadaoka and Martin Gadsden
+81-(0)3-5214-7375
sicpse@jst.go.jp

University of Zurich (International Relations Office)
Yasmine Inauen and Rahel Wartenweiler
rahel.wartenweiler@int.uzh.ch

Embassy of Switzerland in Japan (Science & Technology Office Tokyo)
5-9-12 Minami Azabu, Minato-ku, Tokyo 106-8589
Matthias Frey and Michael Vogelsanger
+81-(0)3-5449-8400
matthias.frey@eda.admin.ch